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Algebra B and independent family in N

Let B be the measure algebra of the product measure λ on 2c.

For every b ∈ B, b = B ·, where B = B0 × 2c\I , B0 ∈ Bor(2I ),
I ⊆ c countable.

In particular, |B| = c.

We denote still by λ the measure on B.

B has density c in the Frechet-Nikodym distance
(a, b)→ λ(a

a
b).

There is an independent family J = {Nξ : ξ < c} of subsets
of N; this means that for any finite and disjoint s, t ⊆ c,⋂

ξ∈s
Nξ ∩

⋂
ξ∈t

(N \ Nξ) 6= ∅.

Let such an independent family J be faithfully indexed as
{Nb : b ∈ B}.
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Algebra A (recall J = {Nb : b ∈ B})

Work in the simple product BN; if a ∈ BN then a = (a(n))n∈N.
Define Gb ∈ BN as

Gb(n) :=

{
b if n ∈ Nb,

0 otherwise.

Definition

A is the subalgebra in BN generated by all Gb, b ∈ B.

In other words, A is freely generated by Gb modulo
Gb1 ∧ . . . ∧ Gbk = 0 whenever b1 ∧ . . . ∧ bk = 0.
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Algebra A, K = ULT(A) and the Banach space C (K )

Let P(A) be the space of all finitely additive measures on A.
P(A) is a compact space as a subspace of [0, 1]A.
Every µ ∈ P(A) defines uniquely a regular probability measure µ̂
on K .
We have µn ∈ P(A) defined as µn(a) = a(n) for a ∈ A.
µn’s distinguish elements of A and moreover µ̂n’s distinguish
continuous functions on K : if g , h ∈ C (K ) and∫

K
h dµ̂n =

∫
K

g dµ̂n,

for every n then g = h.
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Theorem (Mägerl-Namioka)

Given any algebra C, the space P(C) is separable iff there is there
is a sequence νn ∈ P(A) such that for every a ∈ A+, νn(a) ≥ 1/2
for some n.

Lemma

The space P(A) is not separable.

Proof. P(B) is not separable. B can be identified with B1 ⊆ BN

consisting of constant sequences. For every a ∈ B+
1 there is

a′ ∈ A+ such that a′ ≤ a. This and theorem above imply that
P(A) is not separable.

Theorem (APR,Talagrand under CH)

There is a compact space K such that C (K )∗ is weak∗-separable
while the unit ball in C (K )∗ is not weak∗-separable.

Grzegorz Plebanek (Uniwersytet Wroc lawski) A simple Boolean algebra with complicated space of measures
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Baire measurability of the norm

Let X be a Banach space and X ∗ its dual.
Let Ba(X ) denote the least σ-algebra making all x∗ measurable.
Ba(X ) is generated by all half-spaces {x ∈ X : x∗(x) ≤ r}, r ∈ R,
x∗ ∈ X ∗.
Note that the norm || · || : X → R is Ba(X )-measurable iff

BX = {x ∈ X : ||x || ≤ 1} ∈ Ba(X ),

iff BX can be made of countably many halfspaces.
Recall that the weak∗-topology on X ∗ is the topology of pointwise
convergence on X , i.e. a typical neighbourhood of 0 ∈ X ∗ is of the
form

{x∗ ∈ X ∗ : |x∗(x1)| < ε, . . . , |x∗(xk)| < ε}.

The following implications hold

(BX∗ ,weak∗) sep. ⇒ BX ∈ Ba(X ) ⇒ (X ∗,weak∗) sep.
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The problem

Let K = ULT(A); is BC(K) in Ba(C (K ))?

Some partial results

BC(K) is not in the σ-algebra generated by µ̂n’s.

Given n, there is µ2
n ∈ P(A) such that

µ2
n(Gb) = (λ(b))2,

whenever n ∈ Nb.

Given a simple function g ∈ C (K ), the condition ||g || ≤ 1

can be expressed in terms of µ̂n and µ̂2
n using countable

quantifiers.

We do not know if this implies BC(K) ∈ Ba(C (K )). . .
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