A simple Boolean algebra with complicated space of measures

Grzegorz Plebanek (Uniwersytet Wrocławski)

joint work with **A. Avilés** and **J. Rodríguez** (Universidad de Murcia)

WINTER SCHOOL IN ABSTRACT ANALYSIS Hejnice, January 2012

- 4 目 ト - 4 日 ト

Grzegorz Plebanek (Uniwersytet Wrocławski) A simple Boolean algebra with complicated space of measures

<ロ> <部> <部> <き> <き>

æ.

• Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.

Grzegorz Plebanek (Uniwersytet Wrocławski) A simple Boolean algebra with complicated space of measures

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.
- For every $b \in \mathfrak{B}$, $b = B^{\cdot}$, where $B = B_0 \times 2^{\mathfrak{c} \setminus I}$, $B_0 \in Bor(2^I)$, $I \subseteq \mathfrak{c}$ countable.

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.
- For every $b \in \mathfrak{B}$, $b = B^{\cdot}$, where $B = B_0 \times 2^{\mathfrak{c} \setminus I}$, $B_0 \in Bor(2^{I})$, $I \subseteq \mathfrak{c}$ countable.
- In particular, $|\mathfrak{B}| = \mathfrak{c}$.

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.
- For every $b \in \mathfrak{B}$, $b = B^{\cdot}$, where $B = B_0 \times 2^{\mathfrak{c} \setminus I}$, $B_0 \in Bor(2^{I})$, $I \subseteq \mathfrak{c}$ countable.
- In particular, $|\mathfrak{B}| = \mathfrak{c}$.
- We denote still by λ the measure on \mathfrak{B} .

(日) (同) (三) (三)

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.
- For every $b \in \mathfrak{B}$, $b = B^{\cdot}$, where $B = B_0 \times 2^{\mathfrak{c} \setminus I}$, $B_0 \in Bor(2^{I})$, $I \subseteq \mathfrak{c}$ countable.
- In particular, $|\mathfrak{B}| = \mathfrak{c}$.
- We denote still by λ the measure on \mathfrak{B} .
- \mathfrak{B} has density \mathfrak{c} in the Frechet-Nikodym distance $(a, b) \rightarrow \lambda(a \wedge b)$.

(日) (同) (三) (三)

-

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.
- For every $b \in \mathfrak{B}$, $b = B^{\cdot}$, where $B = B_0 \times 2^{\mathfrak{c} \setminus I}$, $B_0 \in Bor(2^{I})$, $I \subseteq \mathfrak{c}$ countable.
- In particular, $|\mathfrak{B}| = \mathfrak{c}$.
- We denote still by λ the measure on \mathfrak{B} .
- \mathfrak{B} has density \mathfrak{c} in the Frechet-Nikodym distance $(a, b) \rightarrow \lambda(a \wedge b)$.
- There is an independent family J = {N_ξ : ξ < c} of subsets of N; this means that for any finite and disjoint s, t ⊆ c,

$$\bigcap_{\xi\in s} N_{\xi} \cap \bigcap_{\xi\in t} (\mathbb{N}\setminus N_{\xi}) \neq \emptyset.$$

-

- Let 𝔅 be the measure algebra of the product measure λ on 2^c.
- For every $b \in \mathfrak{B}$, $b = B^{\cdot}$, where $B = B_0 \times 2^{\mathfrak{c} \setminus I}$, $B_0 \in Bor(2^{I})$, $I \subseteq \mathfrak{c}$ countable.
- In particular, $|\mathfrak{B}| = \mathfrak{c}$.
- We denote still by λ the measure on \mathfrak{B} .
- \mathfrak{B} has density \mathfrak{c} in the Frechet-Nikodym distance $(a, b) \rightarrow \lambda(a \wedge b)$.
- There is an independent family J = {N_ξ : ξ < c} of subsets of N; this means that for any finite and disjoint s, t ⊆ c,

$$\bigcap_{\xi \in s} N_{\xi} \cap \bigcap_{\xi \in t} (\mathbb{N} \setminus N_{\xi}) \neq \emptyset.$$

• Let such an independent family \mathcal{J} be faithfully indexed as $\{N_b : b \in \mathfrak{B}\}.$

-

Grzegorz Plebanek (Uniwersytet Wrocławski) A simple Boolean algebra with complicated space of measures

<ロ> <四> <四> <四> <三</p>

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$;

<ロ> <同> <同> < 回> < 回> < 回</p>

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$; if $a \in \mathfrak{B}^{\mathbb{N}}$ then $a = (a(n))_{n \in \mathbb{N}}$.

イロン 不得 とくほ とくほ とうほう

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$; if $a \in \mathfrak{B}^{\mathbb{N}}$ then $a = (a(n))_{n \in \mathbb{N}}$. Define $G_b \in \mathfrak{B}^{\mathbb{N}}$ as

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$; if $a \in \mathfrak{B}^{\mathbb{N}}$ then $a = (a(n))_{n \in \mathbb{N}}$. Define $G_b \in \mathfrak{B}^{\mathbb{N}}$ as

$$\mathcal{G}_b(n):=egin{cases} b & ext{if } n\in N_b,\ oldsymbol{0} & ext{otherwise}. \end{cases}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$; if $a \in \mathfrak{B}^{\mathbb{N}}$ then $a = (a(n))_{n \in \mathbb{N}}$. Define $G_b \in \mathfrak{B}^{\mathbb{N}}$ as

$$G_b(n):=egin{cases} b & ext{if } n\in N_b,\ oldsymbol{0} & ext{otherwise}. \end{cases}$$

Definition

 \mathfrak{A} is the subalgebra in $\mathfrak{B}^{\mathbb{N}}$ generated by all G_b , $b \in \mathfrak{B}$.

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$; if $a \in \mathfrak{B}^{\mathbb{N}}$ then $a = (a(n))_{n \in \mathbb{N}}$. Define $G_b \in \mathfrak{B}^{\mathbb{N}}$ as

$$\mathcal{G}_b(n):=egin{cases} b & ext{if } n\in N_b,\ oldsymbol{0} & ext{otherwise}. \end{cases}$$

Definition

 \mathfrak{A} is the subalgebra in $\mathfrak{B}^{\mathbb{N}}$ generated by all G_b , $b \in \mathfrak{B}$.

In other words, \mathfrak{A} is freely generated by G_b modulo $G_{b_1} \wedge \ldots \wedge G_{b_k} = 0$ whenever $b_1 \wedge \ldots \wedge b_k = 0$.

・ロト ・同ト ・ヨト ・ヨト - ヨ

Algebra \mathfrak{A} , $K = ULT(\mathfrak{A})$ and the Banach space C(K)

Grzegorz Plebanek (Uniwersytet Wrocławski) A simple Boolean algebra with complicated space of measures

(日) (종) (종) (종) (종) (종)

Algebra $\mathfrak{A}, K = \operatorname{ULT}(\mathfrak{A})$ and the Banach space C(K)

Let $P(\mathfrak{A})$ be the space of all finitely additive measures on \mathfrak{A} .

Algebra \mathfrak{A} , $K = ULT(\mathfrak{A})$ and the Banach space C(K)

Let $P(\mathfrak{A})$ be the space of all finitely additive measures on \mathfrak{A} . $P(\mathfrak{A})$ is a compact space as a subspace of $[0, 1]^{\mathfrak{A}}$.

- * 同 * * ヨ * * ヨ * - ヨ

Algebra \mathfrak{A} , $K = ULT(\mathfrak{A})$ and the Banach space C(K)

Let $P(\mathfrak{A})$ be the space of all finitely additive measures on \mathfrak{A} . $P(\mathfrak{A})$ is a compact space as a subspace of $[0,1]^{\mathfrak{A}}$. Every $\mu \in P(\mathfrak{A})$ defines uniquely a regular probability measure $\hat{\mu}$ on K.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Algebra \mathfrak{A} , $\mathcal{K} = ULT(\mathfrak{A})$ and the Banach space $\mathcal{C}(\mathcal{K})$

Let $P(\mathfrak{A})$ be the space of all finitely additive measures on \mathfrak{A} . $P(\mathfrak{A})$ is a compact space as a subspace of $[0,1]^{\mathfrak{A}}$. Every $\mu \in P(\mathfrak{A})$ defines uniquely a regular probability measure $\hat{\mu}$ on K.

We have $\mu_n \in P(\mathfrak{A})$ defined as $\mu_n(a) = a(n)$ for $a \in \mathfrak{A}$.

く 戸 と く ヨ と く ヨ と

Algebra \mathfrak{A} , $\mathcal{K} = ULT(\mathfrak{A})$ and the Banach space $C(\mathcal{K})$

Let $P(\mathfrak{A})$ be the space of all finitely additive measures on \mathfrak{A} . $P(\mathfrak{A})$ is a compact space as a subspace of $[0,1]^{\mathfrak{A}}$. Every $\mu \in P(\mathfrak{A})$ defines uniquely a regular probability measure $\hat{\mu}$ on K.

We have $\mu_n \in P(\mathfrak{A})$ defined as $\mu_n(a) = a(n)$ for $a \in \mathfrak{A}$. μ_n 's distinguish elements of \mathfrak{A} and moreover $\widehat{\mu_n}$'s distinguish continuous functions on K: if $g, h \in C(K)$ and

$$\int_{\mathcal{K}} h \, \mathrm{d}\widehat{\mu_n} = \int_{\mathcal{K}} g \, \mathrm{d}\widehat{\mu_n},$$

for every *n* then g = h.

4 回 ト 4 三 ト 4 三 ト

Given any algebra \mathfrak{C} , the space $P(\mathfrak{C})$ is separable iff there is there is a sequence $\nu_n \in P(\mathfrak{A})$ such that for every $a \in \mathfrak{A}^+$, $\nu_n(a) \ge 1/2$ for some n.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Given any algebra \mathfrak{C} , the space $P(\mathfrak{C})$ is separable iff there is there is a sequence $\nu_n \in P(\mathfrak{A})$ such that for every $a \in \mathfrak{A}^+$, $\nu_n(a) \ge 1/2$ for some n.

Lemma

The space $P(\mathfrak{A})$ is not separable.

イロト イポト イヨト イヨト 二日

Given any algebra \mathfrak{C} , the space $P(\mathfrak{C})$ is separable iff there is there is a sequence $\nu_n \in P(\mathfrak{A})$ such that for every $a \in \mathfrak{A}^+$, $\nu_n(a) \ge 1/2$ for some n.

Lemma

The space $P(\mathfrak{A})$ is not separable.

Proof. $P(\mathfrak{B})$ is not separable. \mathfrak{B} can be identified with $\mathfrak{B}_1 \subseteq \mathfrak{B}^{\mathbb{N}}$ consisting of constant sequences. For every $a \in \mathfrak{B}_1^+$ there is $a' \in \mathfrak{A}^+$ such that $a' \leq a$. This and theorem above imply that $P(\mathfrak{A})$ is not separable.

・ロト ・同ト ・ヨト ・ヨト - ヨ

Given any algebra \mathfrak{C} , the space $P(\mathfrak{C})$ is separable iff there is there is a sequence $\nu_n \in P(\mathfrak{A})$ such that for every $a \in \mathfrak{A}^+$, $\nu_n(a) \ge 1/2$ for some n.

Lemma

The space $P(\mathfrak{A})$ is not separable.

Proof. $P(\mathfrak{B})$ is not separable. \mathfrak{B} can be identified with $\mathfrak{B}_1 \subseteq \mathfrak{B}^{\mathbb{N}}$ consisting of constant sequences. For every $a \in \mathfrak{B}_1^+$ there is $a' \in \mathfrak{A}^+$ such that $a' \leq a$. This and theorem above imply that $P(\mathfrak{A})$ is not separable.

Theorem (APR, Talagrand under CH)

There is a compact space K such that $C(K)^*$ is weak*-separable while the unit ball in $C(K)^*$ is not weak*-separable.

Let X be a Banach space and X^* its dual.

Let X be a Banach space and X^* its dual.

Let Ba(X) denote the least σ -algebra making all x^* measurable.

Let X be a Banach space and X^* its dual.

Let Ba(X) denote the least σ -algebra making all x^* measurable. Ba(X) is generated by all half-spaces $\{x \in X : x^*(x) \le r\}$, $r \in \mathbb{R}$, $x^* \in X^*$.

Let X be a Banach space and X^* its dual.

Let Ba(X) denote the least σ -algebra making all x^* measurable. Ba(X) is generated by all half-spaces $\{x \in X : x^*(x) \le r\}$, $r \in \mathbb{R}$, $x^* \in X^*$.

Note that the norm $|| \cdot || : X \to \mathbb{R}$ is Ba(X)-measurable iff

$$B_X = \{x \in X : ||x|| \le 1\} \in Ba(X),$$

Let X be a Banach space and X^* its dual.

Let Ba(X) denote the least σ -algebra making all x^* measurable. Ba(X) is generated by all half-spaces $\{x \in X : x^*(x) \le r\}$, $r \in \mathbb{R}$, $x^* \in X^*$.

Note that the norm $|| \cdot || : X \to \mathbb{R}$ is Ba(X)-measurable iff

$$B_X = \{x \in X : ||x|| \le 1\} \in Ba(X),$$

iff B_X can be made of countably many halfspaces.

Let X be a Banach space and X^* its dual.

Let Ba(X) denote the least σ -algebra making all x^* measurable. Ba(X) is generated by all half-spaces $\{x \in X : x^*(x) \le r\}$, $r \in \mathbb{R}$, $x^* \in X^*$.

Note that the norm $|| \cdot || : X \to \mathbb{R}$ is Ba(X)-measurable iff

$$B_X = \{x \in X : ||x|| \le 1\} \in Ba(X),$$

iff B_X can be made of countably many halfspaces.

Recall that the *weak**-topology on X^* is the topology of pointwise convergence on X, i.e. a typical neighbourhood of $0 \in X^*$ is of the form

$$\{x^* \in X^* : |x^*(x_1)| < \varepsilon, \ldots, |x^*(x_k)| < \varepsilon\}.$$

Let X be a Banach space and X^* its dual.

Let Ba(X) denote the least σ -algebra making all x^* measurable. Ba(X) is generated by all half-spaces $\{x \in X : x^*(x) \le r\}$, $r \in \mathbb{R}$, $x^* \in X^*$.

Note that the norm $|| \cdot || : X \to \mathbb{R}$ is Ba(X)-measurable iff

$$B_X = \{x \in X : ||x|| \le 1\} \in Ba(X),$$

iff B_X can be made of countably many halfspaces.

Recall that the *weak**-topology on X^* is the topology of pointwise convergence on X, i.e. a typical neighbourhood of $0 \in X^*$ is of the form

$$\{x^* \in X^* : |x^*(x_1)| < \varepsilon, \ldots, |x^*(x_k)| < \varepsilon\}.$$

The following implications hold

$$(B_{X^*}, weak^*)$$
 sep. $\Rightarrow B_X \in Ba(X) \Rightarrow (X^*, weak^*)$ sep.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣…

Let $K = ULT(\mathfrak{A})$; is $B_{C(K)}$ in Ba(C(K))?

<ロ> <同> <同> < 回> < 回> < 回</p>

Let
$$K = ULT(\mathfrak{A})$$
; is $B_{C(K)}$ in $Ba(C(K))$?

Some partial results

Grzegorz Plebanek (Uniwersytet Wrocławski) A simple Boolean algebra with complicated space of measures

ヘロン 人間 とくほ とくほ とう

æ.

Let
$$K = ULT(\mathfrak{A})$$
; is $B_{C(K)}$ in $Ba(C(K))$?

Some partial results

• $B_{C(K)}$ is not in the σ -algebra generated by $\widehat{\mu_n}$'s.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Let
$$K = ULT(\mathfrak{A})$$
; is $B_{C(K)}$ in $Ba(C(K))$?

Some partial results

- $B_{C(K)}$ is not in the σ -algebra generated by $\widehat{\mu_n}$'s.
- Given *n*, there is $\mu_n^2 \in P(\mathfrak{A})$ such that

$$\mu_n^2(G_b) = (\lambda(b))^2,$$

whenever $n \in N_b$.

- 4 同 2 4 日 2 4 日 2 4

Let
$$K = ULT(\mathfrak{A})$$
; is $B_{C(K)}$ in $Ba(C(K))$?

Some partial results

- $B_{C(K)}$ is not in the σ -algebra generated by $\widehat{\mu_n}$'s.
- Given *n*, there is $\mu_n^2 \in P(\mathfrak{A})$ such that

$$\mu_n^2(G_b) = (\lambda(b))^2,$$

whenever $n \in N_b$.

Given a simple function g ∈ C(K), the condition ||g|| ≤ 1 can be expressed in terms of µ̂_n and µ̂_n² using countable quantifiers.

- 4 同 2 4 回 2 4 回 2 4

Let
$$K = ULT(\mathfrak{A})$$
; is $B_{C(K)}$ in $Ba(C(K))$?

Some partial results

- $B_{C(K)}$ is not in the σ -algebra generated by $\widehat{\mu_n}$'s.
- Given *n*, there is $\mu_n^2 \in P(\mathfrak{A})$ such that

$$\mu_n^2(G_b) = (\lambda(b))^2,$$

whenever $n \in N_b$.

- Given a simple function g ∈ C(K), the condition ||g|| ≤ 1 can be expressed in terms of µ̂_n and µ̂_n² using countable quantifiers.
- We do not know if this implies $B_{C(K)} \in Ba(C(K))...$

< ロ > < 同 > < 回 > < 回 > < 回 > <