A simple Boolean algebra with complicated space of measures

Grzegorz Plebanek (Uniwersytet Wrocławski)
joint work with A. Avilés and J. Rodríguez
(Universidad de Murcia)
Winter School in Abstract Analysis
Hejnice, January 2012

Algebra \mathfrak{B} and independent family in \mathbb{N}

Algebra \mathfrak{B} and independent family in \mathbb{N}

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.

Algebra \mathfrak{B} and independent family in \mathbb{N}

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.
- For every $b \in \mathfrak{B}, b=B$, where $B=B_{0} \times 2^{\mathfrak{c} \backslash}$, $B_{0} \in \operatorname{Bor}\left(2^{\prime}\right)$, $I \subseteq \mathfrak{c}$ countable.

Algebra \mathfrak{B} and independent family in \mathbb{N}

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.
- For every $b \in \mathfrak{B}, b=B$, where $B=B_{0} \times 2^{\mathfrak{c} \backslash}$, $B_{0} \in \operatorname{Bor}\left(2^{\prime}\right)$, $I \subseteq \mathfrak{c}$ countable.
- In particular, $|\mathfrak{B}|=\mathfrak{c}$.

Algebra \mathfrak{B} and independent family in \mathbb{N}

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.
- For every $b \in \mathfrak{B}, b=B$, where $B=B_{0} \times 2^{\mathfrak{c} \backslash}$, $B_{0} \in \operatorname{Bor}\left(2^{\prime}\right)$, $I \subseteq \mathfrak{c}$ countable.
- In particular, $|\mathfrak{B}|=\mathbf{c}$.
- We denote still by λ the measure on \mathfrak{B}.

Algebra \mathfrak{B} and independent family in \mathbb{N}

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.
- For every $b \in \mathfrak{B}, b=B$, where $B=B_{0} \times 2^{\mathfrak{c} \backslash}$, $B_{0} \in \operatorname{Bor}\left(2^{\prime}\right)$, $I \subseteq \mathfrak{c}$ countable.
- In particular, $|\mathfrak{B}|=\mathfrak{c}$.
- We denote still by λ the measure on \mathfrak{B}.
- \mathfrak{B} has density \mathfrak{c} in the Frechet-Nikodym distance $(a, b) \rightarrow \lambda(a \triangle b)$.

Algebra \mathfrak{B} and independent family in \mathbb{N}

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.
- For every $b \in \mathfrak{B}, b=B$, where $B=B_{0} \times 2^{\mathfrak{c} \backslash}$, $B_{0} \in \operatorname{Bor}\left(2^{\prime}\right)$, $I \subseteq \mathfrak{c}$ countable.
- In particular, $|\mathfrak{B}|=\mathfrak{c}$.
- We denote still by λ the measure on \mathfrak{B}.
- \mathfrak{B} has density \mathfrak{c} in the Frechet-Nikodym distance $(a, b) \rightarrow \lambda(a \triangle b)$.
- There is an independent family $\mathcal{J}=\left\{N_{\xi}: \xi<\mathfrak{c}\right\}$ of subsets of \mathbb{N}; this means that for any finite and disjoint $s, t \subseteq \mathfrak{c}$,

$$
\bigcap_{\xi \in s} N_{\xi} \cap \bigcap_{\xi \in t}\left(\mathbb{N} \backslash N_{\xi}\right) \neq \emptyset .
$$

Algebra \mathfrak{B} and independent family in \mathbb{N}

- Let \mathfrak{B} be the measure algebra of the product measure λ on $2^{\mathfrak{c}}$.
- For every $b \in \mathfrak{B}, b=B$, where $B=B_{0} \times 2^{\mathfrak{c} \backslash}$, $B_{0} \in \operatorname{Bor}\left(2^{\prime}\right)$, $I \subseteq \mathfrak{c}$ countable.
- In particular, $|\mathfrak{B}|=\mathfrak{c}$.
- We denote still by λ the measure on \mathfrak{B}.
- \mathfrak{B} has density \mathfrak{c} in the Frechet-Nikodym distance $(a, b) \rightarrow \lambda(a \triangle b)$.
- There is an independent family $\mathcal{J}=\left\{N_{\xi}: \xi<\mathfrak{c}\right\}$ of subsets of \mathbb{N}; this means that for any finite and disjoint $s, t \subseteq \mathfrak{c}$,

$$
\bigcap_{\xi \in s} N_{\xi} \cap \bigcap_{\xi \in t}\left(\mathbb{N} \backslash N_{\xi}\right) \neq \emptyset .
$$

- Let such an independent family \mathcal{J} be faithfully indexed as $\left\{N_{b}: b \in \mathfrak{B}\right\}$.

Algebra $\mathfrak{A}\left(\right.$ recall $\left.\mathcal{J}=\left\{N_{b}: b \in \mathfrak{B}\right\}\right)$

Algebra \mathfrak{A} (recall $\left.\mathcal{J}=\left\{N_{b}: b \in \mathfrak{B}\right\}\right)$

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$;

Algebra \mathfrak{A} (recall $\mathcal{J}=\left\{N_{b}: b \in \mathfrak{B}\right\}$)

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$; if $a \in \mathfrak{B}^{\mathbb{N}}$ then $a=(a(n))_{n \in \mathbb{N}}$.

Algebra \mathfrak{A} (recall $\mathcal{J}=\left\{N_{b}: b \in \mathfrak{B}\right\}$)

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$; if $a \in \mathfrak{B}^{\mathbb{N}}$ then $a=(a(n))_{n \in \mathbb{N}}$. Define $G_{b} \in \mathfrak{B}^{\mathbb{N}}$ as

Algebra \mathfrak{A} (recall $\mathcal{J}=\left\{N_{b}: b \in \mathfrak{B}\right\}$)

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$; if $a \in \mathfrak{B}^{\mathbb{N}}$ then $a=(a(n))_{n \in \mathbb{N}}$. Define $G_{b} \in \mathfrak{B}^{\mathbb{N}}$ as

$$
G_{b}(n):= \begin{cases}b & \text { if } n \in N_{b} \\ \mathbf{0} & \text { otherwise }\end{cases}
$$

Algebra \mathfrak{A} (recall $\mathcal{J}=\left\{N_{b}: b \in \mathfrak{B}\right\}$)

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$; if $a \in \mathfrak{B}^{\mathbb{N}}$ then $a=(a(n))_{n \in \mathbb{N}}$. Define $G_{b} \in \mathfrak{B}^{\mathbb{N}}$ as

$$
G_{b}(n):= \begin{cases}b & \text { if } n \in N_{b}, \\ 0 & \text { otherwise. }\end{cases}
$$

Definition

\mathfrak{A} is the subalgebra in $\mathfrak{B}^{\mathbb{N}}$ generated by all $G_{b}, b \in \mathfrak{B}$.

Algebra \mathfrak{A} (recall $\mathcal{J}=\left\{N_{b}: b \in \mathfrak{B}\right\}$)

Work in the simple product $\mathfrak{B}^{\mathbb{N}}$; if $a \in \mathfrak{B}^{\mathbb{N}}$ then $a=(a(n))_{n \in \mathbb{N}}$. Define $G_{b} \in \mathfrak{B}^{\mathbb{N}}$ as

$$
G_{b}(n):= \begin{cases}b & \text { if } n \in N_{b} \\ \mathbf{0} & \text { otherwise }\end{cases}
$$

Definition

\mathfrak{A} is the subalgebra in $\mathfrak{B}^{\mathbb{N}}$ generated by all $G_{b}, b \in \mathfrak{B}$.
In other words, \mathfrak{A} is freely generated by G_{b} modulo $G_{b_{1}} \wedge \ldots \wedge G_{b_{k}}=0$ whenever $b_{1} \wedge \ldots \wedge b_{k}=0$.

Algebra $\mathfrak{A}, K=\operatorname{ULT}(\mathfrak{A})$ and the Banach space $C(K)$

Algebra $\mathfrak{A}, K=\operatorname{ULT}(\mathfrak{A})$ and the Banach space $C(K)$
 Let $P(\mathfrak{A})$ be the space of all finitely additive measures on \mathfrak{A}.

Algebra $\mathfrak{A}, K=\operatorname{ULT}(\mathfrak{A})$ and the Banach space $C(K)$

Let $P(\mathfrak{A})$ be the space of all finitely additive measures on \mathfrak{A}. $P(\mathfrak{A})$ is a compact space as a subspace of $[0,1]^{\mathfrak{A}}$.

Algebra $\mathfrak{A}, K=\operatorname{ULT}(\mathfrak{A})$ and the Banach space $C(K)$

Let $P(\mathfrak{A})$ be the space of all finitely additive measures on \mathfrak{A}.
$P(\mathfrak{A})$ is a compact space as a subspace of $[0,1]^{\mathfrak{A}}$.
Every $\mu \in P(\mathfrak{A})$ defines uniquely a regular probability measure $\widehat{\mu}$ on K.

Algebra $\mathfrak{A}, K=\operatorname{ULT}(\mathfrak{A})$ and the Banach space $C(K)$

Let $P(\mathfrak{A})$ be the space of all finitely additive measures on \mathfrak{A}.
$P(\mathfrak{A})$ is a compact space as a subspace of $[0,1]^{\mathfrak{A}}$.
Every $\mu \in P(\mathfrak{A})$ defines uniquely a regular probability measure $\widehat{\mu}$ on K.
We have $\mu_{n} \in P(\mathfrak{A})$ defined as $\mu_{n}(a)=a(n)$ for $a \in \mathfrak{A}$.

Algebra $\mathfrak{A}, K=\operatorname{ULT}(\mathfrak{A})$ and the Banach space $C(K)$

Let $P(\mathfrak{A})$ be the space of all finitely additive measures on \mathfrak{A}.
$P(\mathfrak{A})$ is a compact space as a subspace of $[0,1]^{\mathfrak{A}}$.
Every $\mu \in P(\mathfrak{A})$ defines uniquely a regular probability measure $\widehat{\mu}$ on K.
We have $\mu_{n} \in P(\mathfrak{A})$ defined as $\mu_{n}(a)=a(n)$ for $a \in \mathfrak{A}$.
μ_{n} 's distinguish elements of \mathfrak{A} and moreover $\widehat{\mu_{n}}$'s distinguish continuous functions on K : if $g, h \in C(K)$ and

$$
\int_{K} h \mathrm{~d} \widehat{\mu_{n}}=\int_{K} g \mathrm{~d} \widehat{\mu_{n}},
$$

for every n then $g=h$.

Theorem (Mägerl-Namioka)

Given any algebra \mathfrak{C}, the space $P(\mathfrak{C})$ is separable iff there is there is a sequence $\nu_{n} \in P(\mathfrak{A})$ such that for every $a \in \mathfrak{A}^{+}, \nu_{n}(a) \geq 1 / 2$ for some n.

Theorem (Mägerl-Namioka)

Given any algebra \mathfrak{C}, the space $P(\mathfrak{C})$ is separable iff there is there is a sequence $\nu_{n} \in P(\mathfrak{A})$ such that for every $a \in \mathfrak{A}^{+}, \nu_{n}(a) \geq 1 / 2$ for some n.

Lemma

The space $P(\mathfrak{A})$ is not separable.

Theorem (Mägerl-Namioka)

Given any algebra \mathfrak{C}, the space $P(\mathfrak{C})$ is separable iff there is there is a sequence $\nu_{n} \in P(\mathfrak{A})$ such that for every $a \in \mathfrak{A}^{+}, \nu_{n}(a) \geq 1 / 2$ for some n.

Lemma

The space $P(\mathfrak{A})$ is not separable.
Proof. $P(\mathfrak{B})$ is not separable. \mathfrak{B} can be identified with $\mathfrak{B}_{1} \subseteq \mathfrak{B}^{\mathbb{N}}$ consisting of constant sequences. For every $a \in \mathfrak{B}_{1}^{+}$there is $a^{\prime} \in \mathfrak{A}^{+}$such that $a^{\prime} \leq a$. This and theorem above imply that $P(\mathfrak{A})$ is not separable.

Theorem (Mägerl-Namioka)

Given any algebra \mathfrak{C}, the space $P(\mathfrak{C})$ is separable iff there is there is a sequence $\nu_{n} \in P(\mathfrak{A})$ such that for every $a \in \mathfrak{A}^{+}, \nu_{n}(a) \geq 1 / 2$ for some n.

Lemma

The space $P(\mathfrak{A})$ is not separable.
Proof. $P(\mathfrak{B})$ is not separable. \mathfrak{B} can be identified with $\mathfrak{B}_{1} \subseteq \mathfrak{B}^{\mathbb{N}}$ consisting of constant sequences. For every $a \in \mathfrak{B}_{1}^{+}$there is $a^{\prime} \in \mathfrak{A}^{+}$such that $a^{\prime} \leq a$. This and theorem above imply that $P(\mathfrak{A})$ is not separable.

Theorem (APR, Talagrand under CH)

There is a compact space K such that $C(K)^{*}$ is weak*-separable while the unit ball in $C(K)^{*}$ is not weak*-separable.

Baire measurability of the norm

Baire measurability of the norm
Let X be a Banach space and X^{*} its dual.

Baire measurability of the norm
Let X be a Banach space and X^{*} its dual.
Let $\mathrm{Ba}(X)$ denote the least σ-algebra making all x^{*} measurable.

Baire measurability of the norm

Let X be a Banach space and X^{*} its dual.
Let $\mathrm{Ba}(X)$ denote the least σ-algebra making all x^{*} measurable. $\mathrm{Ba}(X)$ is generated by all half-spaces $\left\{x \in X: x^{*}(x) \leq r\right\}, r \in \mathbb{R}$, $x^{*} \in X^{*}$.

Baire measurability of the norm

Let X be a Banach space and X^{*} its dual.
Let $\mathrm{Ba}(X)$ denote the least σ-algebra making all x^{*} measurable.
$\mathrm{Ba}(X)$ is generated by all half-spaces $\left\{x \in X: x^{*}(x) \leq r\right\}, r \in \mathbb{R}$, $x^{*} \in X^{*}$.
Note that the norm $\|\cdot\|: X \rightarrow \mathbb{R}$ is $B a(X)$-measurable iff

$$
B_{X}=\{x \in X:\|x\| \leq 1\} \in B a(X),
$$

Baire measurability of the norm

Let X be a Banach space and X^{*} its dual.
Let $\mathrm{Ba}(X)$ denote the least σ-algebra making all x^{*} measurable.
$\mathrm{Ba}(X)$ is generated by all half-spaces $\left\{x \in X: x^{*}(x) \leq r\right\}, r \in \mathbb{R}$, $x^{*} \in X^{*}$.
Note that the norm $\|\cdot\|: X \rightarrow \mathbb{R}$ is $B a(X)$-measurable iff

$$
B_{X}=\{x \in X:\|x\| \leq 1\} \in B a(X),
$$

iff B_{X} can be made of countably many halfspaces.

Baire measurability of the norm

Let X be a Banach space and X^{*} its dual.
Let $\mathrm{Ba}(X)$ denote the least σ-algebra making all x^{*} measurable.
$\mathrm{Ba}(X)$ is generated by all half-spaces $\left\{x \in X: x^{*}(x) \leq r\right\}, r \in \mathbb{R}$, $x^{*} \in X^{*}$.
Note that the norm $\|\cdot\|: X \rightarrow \mathbb{R}$ is $\mathrm{Ba}(X)$-measurable iff

$$
B_{X}=\{x \in X:\|x\| \leq 1\} \in B a(X)
$$

iff B_{X} can be made of countably many halfspaces.
Recall that the weak*-topology on X^{*} is the topology of pointwise convergence on X, i.e. a typical neighbourhood of $0 \in X^{*}$ is of the form

$$
\left\{x^{*} \in X^{*}:\left|x^{*}\left(x_{1}\right)\right|<\varepsilon, \ldots,\left|x^{*}\left(x_{k}\right)\right|<\varepsilon\right\} .
$$

Baire measurability of the norm

Let X be a Banach space and X^{*} its dual.
Let $\mathrm{Ba}(X)$ denote the least σ-algebra making all x^{*} measurable.
$\mathrm{Ba}(X)$ is generated by all half-spaces $\left\{x \in X: x^{*}(x) \leq r\right\}, r \in \mathbb{R}$, $x^{*} \in X^{*}$.
Note that the norm $\|\cdot\|: X \rightarrow \mathbb{R}$ is $\mathrm{Ba}(X)$-measurable iff

$$
B_{X}=\{x \in X:\|x\| \leq 1\} \in B a(X)
$$

iff B_{X} can be made of countably many halfspaces.
Recall that the weak*-topology on X^{*} is the topology of pointwise convergence on X, i.e. a typical neighbourhood of $0 \in X^{*}$ is of the form

$$
\left\{x^{*} \in X^{*}:\left|x^{*}\left(x_{1}\right)\right|<\varepsilon, \ldots,\left|x^{*}\left(x_{k}\right)\right|<\varepsilon\right\} .
$$

The following implications hold

$$
\left(B_{X^{*}}, \text { weak* }\right) \text { sep. } \Rightarrow B_{X} \in B a(X) \Rightarrow\left(X^{*}, \text { weak }{ }^{*}\right) \text { sep. }
$$

The problem

The problem
 Let $K=\operatorname{ULT}(\mathfrak{A})$; is $B_{C(K)}$ in $B a(C(K))$?

The problem
 Let $K=\operatorname{ULT}(\mathfrak{A})$; is $B_{C(K)}$ in $B a(C(K))$?

Some partial results

The problem
 Let $K=\operatorname{ULT}(\mathfrak{A})$; is $B_{C(K)}$ in $B a(C(K))$?

Some partial results

- $B_{C(K)}$ is not in the σ-algebra generated by $\widehat{\mu_{n}}$'s.

The problem

Let $K=\operatorname{ULT}(\mathfrak{A})$; is $B_{C(K)}$ in $B a(C(K))$?

Some partial results

- $B_{C(K)}$ is not in the σ-algebra generated by $\widehat{\mu_{n}}$'s.
- Given n, there is $\mu_{n}^{2} \in P(\mathfrak{A})$ such that

$$
\mu_{n}^{2}\left(G_{b}\right)=(\lambda(b))^{2}
$$

whenever $n \in N_{b}$.

The problem

Let $K=\operatorname{ULT}(\mathfrak{A})$; is $B_{C(K)}$ in $B a(C(K))$?

Some partial results

- $B_{C(K)}$ is not in the σ-algebra generated by $\widehat{\mu_{n}}$'s.
- Given n, there is $\mu_{n}^{2} \in P(\mathfrak{A})$ such that

$$
\mu_{n}^{2}\left(G_{b}\right)=(\lambda(b))^{2}
$$

whenever $n \in N_{b}$.

- Given a simple function $g \in C(K)$, the condition $\|g\| \leq 1$ can be expressed in terms of $\widehat{\mu_{n}}$ and $\widehat{\mu_{n}^{2}}$ using countable quantifiers.

The problem

Let $K=\operatorname{ULT}(\mathfrak{A})$; is $B_{C(K)}$ in $B a(C(K))$?

Some partial results

- $B_{C(K)}$ is not in the σ-algebra generated by $\widehat{\mu_{n}}$'s.
- Given n, there is $\mu_{n}^{2} \in P(\mathfrak{A})$ such that

$$
\mu_{n}^{2}\left(G_{b}\right)=(\lambda(b))^{2}
$$

whenever $n \in N_{b}$.

- Given a simple function $g \in C(K)$, the condition $\|g\| \leq 1$ can be expressed in terms of $\widehat{\mu_{n}}$ and $\widehat{\mu_{n}^{2}}$ using countable quantifiers.
- We do not know if this implies $B_{C(K)} \in B a(C(K)) \ldots$

